a2 United States Patent

Hechtman et al.

US009436395B2

US 9,436,395 B2
Sep. 6, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

MECHANISMS TO SAVE USER/KERNEL
COPY FOR CROSS DEVICE
COMMUNICATIONS

Applicant: Advanced Micro Devices, Inc.,
Sunnyvale, CA (US)

Blake A. Hechtman, Bellevue, WA
(US); Shuai Che, Bellevue, WA (US)

Inventors:

Assignee: Advanced Micro Devices, Inc.,

Sunnyvale, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 358 days.

Appl. No.: 14/213,640
Filed: Mar. 14, 2014

Prior Publication Data

US 2015/0261457 Al Sep. 17, 2015

Int. CL.

GO6F 9/26 (2006.01)

GO6F 3/06 (2006.01)

GO6F 12/10 (2016.01)

GO6F 9/52 (2006.01)

GO6F 9/54 (2006.01)

GO6F 12/14 (2006.01)

U.S. CL

CPC GO6F 3/0619 (2013.01); GOGF 3/065

(2013.01); GO6F 3/067 (2013.01); GO6F
3/0637 (2013.01); GO6F 9/52 (2013.01);
GO6F 9/54 (2013.01); GO6F 12/1081
(2013.01); GO6F 12/1491 (2013.01); GO6F
2212/1024 (2013.01); GO6F 2212/657
(2013.01)
Field of Classification Search
USPC e 711/205, 6; 710/308
See application file for complete search history.

510

(56) References Cited

U.S. PATENT DOCUMENTS

5,895,499 A 4/1999 Chu
6,044,445 A 3/2000 Tsuda et al.
6,349,355 B1* 2/2002 Draves GO6F 9/4843
711/203
6,891,543 B2 5/2005 Wyatt
7,451,456 B2 112008 Andjelic
8,395,631 Bl 3/2013 Wilt
8,397,241 B2 3/2013 Xiaocheng et al.
2002/0152330 Al* 10/2002 Casper GOG6F 11/3632
719/318
2003/0120856 Al* 6/2003 Neigerc....... GOGF 12/0284
711/6
2007/0011687 A1* 1/2007 TLK ..oooovrvrevrveennn GO6F 9/546
719/313
2008/0126762 Al* 5/2008 Kelleyccoccovnnen GOG6F 9/547
712/225
2010/0228895 Al* 9/2010 Kim ..ccocovvvvrerrennenn. GOG6F 9/545
710/33
2010/0299667 Al 11/2010 Ahmad et al.
2012/0246381 Al 9/2012 Kegel et al.
2013/0007406 Al 1/2013 Sheaffer et al.
2013/0021353 Al 1/2013 Drebin et al.
2013/0027410 Al 1/2013 Ginzburg et al.

FOREIGN PATENT DOCUMENTS

JP 2012238316 A
WO WO 2012/037706 Al

* 12/2012
3/2012

* cited by examiner
Primary Examiner — Paul R Myers

(74) Attorney, Agent, or Firm — Volpe and Koenig, P.C.

(57) ABSTRACT

Central processing units (CPUs) in computing systems man-
age graphics processing units (GPUs), network processors,
security co-processors, and other data heavy devices as
buffered peripherals using device drivers. Unfortunately, as
a result of large and latency-sensitive data transfers between
CPUs and these external devices, and memory partitioned
into kernel-access and user-access spaces, these schemes to
manage peripherals may introduce latency and memory use
inefficiencies. Proposed are schemes to reduce latency and
redundant memory copies using virtual to physical page
remapping while maintaining user/kernel level access
abstractions.

20 Claims, 7 Drawing Sheets

520 500

521

‘ Virtual 5
550 — 7| User Buffer

t User-Access Virtual
'/4 Address Space
551

Virtual
530 Device Buffer
‘ Virtual o
540 ¥ Device Buffer |

Kernel-Access
Virtual Address
Vi Space

Page Table Translator

533

|- 535

Physical Address
Space

US 9,436,395 B2

U.S. Patent Sep. 6, 2016 Sheet 1 of 7
152 /150 154
e g I 2N
_ Buffer | Memory |_Buffer |
'y 7" R
Y v
DMA |, Processor .| DMA
| Controller | "| Controller
130 I \
160 v
Interface Interface
Device | ' Device
110 120

| Address
| Space

FIG. 1

I Kernel
1 Address

| Space

220 235

interface
Device

\210

FIG. 2

y
Interface
Device

US 9,436,395 B2

Sheet 2 of 7

Sep. 6, 2016

U.S. Patent

I “aomeq
' ndy P

YA

00¢

€ "Old

aoedg
ssalppy [edIsAud

Sve —
N

lagng eo1neQg
peyoo1-abed

Jagng a91neq
payooi-abeyd

Jayng
paxo0]-abed-uoN

0ce

gee

Joje|suel] s|qe| abed

Lce

gee
S momam _______ v\
| ssaIppy [ENMIA
| sseooy-jaulsy|
* seyng aoineq | | — O¥E
: 12815174]
* layng ao1n8Qq %\ 0ce
” Jenpi “
| | 1se
" soeds ssoippr |
| [enuIA $S990y-19s
v Jayng lasn %\ 0s¢e
! [eNLIA .

oLe A

US 9,436,395 B2

Sheet 3 of 7

Sep. 6, 2016

U.S. Patent

0oy

¥ "Old

a2IA8(] PuU0d8g 0] AjI0aliqg

a0edg sSaippy [PUISy Ul
Jayng poyoon abed puoosg
wol Ajjoaliq ejeq teisuel|

A

AN

(0)44

90edg SSAIPPY [PUIDY

ut Jlayng payooT abed
pucoag 0} adedg ssaIppy

JOS Ul Jayng pa)oo
abed-uoN woly e Adon

A
/

oey

a0edg ssalppy
Jes) Ul Jagyng payoo sbeyd
-UON 0} 2oedg ssalppy
[2UIDY Ul Jayng payo0T]
abey 1si14 wol} Bleg Adon

-

ocy

20eds ssaippy
|[aulay Ul Japng pedoo]
abed 15114 0} 921827 18414
wol Agosa eleq Jejsuel)

oLy

US 9,436,395 B2

Sheet 4 of 7

Sep. 6, 2016

U.S. Patent

TSR 1, |
L_anding g
|||||||| = “
(=11 =Tg| " P>
' nduy TR

||u|| |||L
LS mvm\»

00§

Ges

g "Old

aoedg

ssaIppY [edisAud

GrS —
N

Jayng aoinaQg
pax201-abed

Jayng aoineq
paxo01-abed

I —

B

N

Jojejsuel] ajqe] abed

LeS

0¢s

€es
............ momaw v\
- SSaIppY [BNHIA
| SSO00Y-|aula)|
* jegng eomeq | | — O¥S
: [enUIA w
Jayng soInsQ %\ 0€s
[enuin .”
1~ 1SS
" soeds ssaippy ¥]
- jenpiA SS800V-19S(]
\] Jeung Jesn %\ 0SS
: [enmiA :
A

US 9,436,395 B2

Sheet 5 of 7

Sep. 6, 2016

U.S. Patent

009

9 "Old

80In8(Q puU0oag 0} Ajjoslig eoedg
SSBIPPY |ouiay] ul Jayng payao abed
puovag woly Apoaliq ejeq Jajsuel |

A/

099

»

SUOISSILLI [8UIaY UM
layng pexo0] abed puooag o} Jayng
paxo07 abed 1si14 Wol eleq Ado)

A/

0s9

i

allpM-uo-Adoy eoedg ssalppy
[puIay] Ul Jaung paxoo abed 1814 Mep

o

N
ov9

+

20edg SSaIpPY [2UIa) Ul Jayung pax)20]
obed 1114 0} Jayng Josn jenuip dewsy

A/

029

*

aoedg ssalppy
U1y Ul 1ayng payooT abed isii4 0]
32INa(] 414 Wioly Ajoaldi(eje(Jejsued |

-

019

US 9,436,395 B2

Sheet 6 of 7

Sep. 6, 2016

U.S. Patent

L '9Old

£el

p— — momam —

ssalppy |esisAud | ssalppy [eniIp
21774 /4 Sl)/A - m $S900Vy-joula)y

BRI B 1“ Jagng aoinaQg layng asinsQg \ Oov.L

“«——— «——————— | . - —_—— s :

L_indino_ | Q| AV payoor-ebeq [T > a0

IIIIIIII ! | RY
I 9deg L ~ Jayng 221A8(Q] 2 - | Jeyng eo1Ae : o€l

i ‘l|lv_ |||||||||| - I.||I6 I | m . D .\
i__induj_ [L ™ pewoor-ebeq ¢ ® i [ENMIA “
\ \. : o LG/

o PO :

Lyl oL e, \\» 2 - eoedg ssaippy v\

w - |eni/\ SS900Y-18s(

o | .

g / m
GG/ —, layung * , seyngresn | }— 09

paxo01-abed-UoN _ fensiA !

L2. =
002 7 0cL S 0LL A

US 9,436,395 B2

Sheet 7 of 7

Sep. 6, 2016

U.S. Patent

008

8 'Old

layng
pa)o01 abed-uoN
0] Joyng lasn dewsay

0c8

SUOISSIUWLIB J9sM Ylim
Jayng payoo sbed
-UON B 0} Jayng pax)oo]
abed wouy ejeq AdoD

0¢c8

Jayng 1asn buisn
ajlpM-uo-AdoD paxien
layng paxoo01 abed ul
ejeq Aipow o Jdwapy

0L8

US 9,436,395 B2

1
MECHANISMS TO SAVE USER/KERNEL
COPY FOR CROSS DEVICE
COMMUNICATIONS

BACKGROUND

1. Field of the Disclosure

The disclosure generally relates to cross-device commu-
nications, and more specifically to techniques to reduce
redundant copies of data across user and kernel space
boundaries in a virtual memory address space.

2. Related Art

Central processing units (CPUs) in computing systems
may manage graphics processing units (GPUs), network
processors, security co-processors, and other data heavy
devices as buffered peripherals using device drivers. Unfor-
tunately, as a result of large and latency-sensitive data
transfers required between CPUs and these external devices,
and memory partitioned into kernel-access and user-access
spaces, these schemes to manage peripherals may introduce
latency and memory use inefficiencies.

For example, an exemplary computing system may
include a CPU and GPU sharing a common memory address
space, with each of the CPU and GPU having a page-locked
buffer in kernel-access memory address space. Direct
memory access (DMA) controllers may transfer data
between the CPU buffer in kernel-access memory address
space and the CPU, and between the GPU buffer in kernel-
access memory address space and the GPU, without direct
intervention of the CPU. However, to transfer data, for
example, from the CPU to the GPU, may result in creating
a redundant non-page-locked buffer in user-access memory
address space, copying data from the CPU buffer to the
user-access buffer, and copying data from the user-access
buffer to the GPU buffer. Kernel application programming
interfaces (APIs) may include functionality to copy data
between kernel-access and user-access buffers.

Various proposed schemes to avoid creation of a redun-
dant non-page-locked buffer during data transfer between
devices have included customized hardware support of
interconnected devices, or collaboration between device
vendors during development of device drivers. These
schemes introduce additional disadvantages, such as incom-
patibility with new devices, and standard hardware inter-
faces or common device drivers that may drive additional
cost and complexity into the development of new devices.
As such, apparatus and methods to transfer data between
devices that minimizes redundant data copies and latency,
while utilizing existing kernel APIs provides significant
advantages.

SUMMARY

One exemplary embodiment includes a method to copy
data comprising mapping, with kernel permissions, a first
virtual memory address to a first physical memory address,
mapping, with kernel permissions, a second virtual memory
address to a second physical memory address. This embodi-
ment further includes receiving the data at the first physical
memory address, mapping, with user permissions, a third
virtual memory address to the first physical memory
address, and copying, with kernel permissions, the data from
the first physical memory address to the second physical
memory address.

Another exemplary embodiment includes a system to
copy data comprising a memory and a processor, coupled to
the memory, configured to map, with kernel permissions, a

10

15

20

25

30

35

40

45

50

55

60

65

2

first virtual memory address to a first physical memory
address in the memory. This embodiment includes the
processor configured to map, with kernel permissions, a
second virtual memory address to a second physical memory
address in the memory and receive the data at the first
physical memory address. Still further, this embodiment
includes the processor configured to map, with user permis-
sions, a third virtual memory address to the first physical
memory address, and copy, with kernel permissions, the data
from the first physical memory address to the second physi-
cal memory address.

An additional exemplary embodiment includes a non-
transitory computer readable medium comprising instruc-
tions that when executed by a processor cause the processor
to map, with kernel permissions, a first virtual memory
address to a first physical memory address and map, with
kernel permissions, a second virtual memory address to a
second physical memory address and receive data at the first
physical memory address. This exemplary embodiment also
includes the non-transitory computer readable medium com-
prising instructions that when executed by a processor cause
the processor to map, with user permissions, a third virtual
memory address to the first physical memory address, and
copy, with kernel permissions, the data from the first physi-
cal memory address to the second physical memory address.

The above exemplary embodiments will become more
readily apparent from the following detailed description
with reference to the accompanying drawings. However, the
above exemplary embodiments do not limit additional dis-
closed embodiments present in the following detailed
description.

BRIEF DESCRIPTION OF THE
DRAWINGS/FIGURES

Embodiments of the disclosure are described with refer-
ence to the accompanying drawings. In the drawings, like
reference numbers indicate identical or functionally similar
elements. Additionally, the left most digit(s) of a reference
number identifies the drawing in which the reference num-
ber first appears.

FIG. 1 illustrates a block diagram of a computing system
comprising multiple DMA device interfaces according to an
exemplary embodiment of the present disclosure;

FIG. 2 illustrates a block diagram of a computing system
comprising a shared memory partitioned into user and kernel
access memory address spaces according to an exemplary
embodiment of the present disclosure;

FIG. 3 illustrates a block diagram of a memory system
including two device interfaces according to an exemplary
embodiment of the present disclosure;

FIG. 4 illustrates a flowchart including operational steps
to transfer data between two devices using a shared memory
according to an exemplary embodiment of the present
disclosure;

FIG. 5 illustrates a block diagram of a memory system
including virtual to physical address remapping according to
an exemplary embodiment of the present disclosure;

FIG. 6 illustrates a flowchart including operational steps
to transfer data between two devices using a shared memory
according to an exemplary embodiment of the present
disclosure;

FIG. 7 illustrates a block diagram of a memory system
including virtual to physical address remapping and copy-
on-write according to an exemplary embodiment of the
present disclosure; and

US 9,436,395 B2

3

FIG. 8 illustrates a flowchart including operational steps
to preserve the integrity of copy-on-write device buffers
according to an exemplary embodiment of the present
disclosure.

Embodiments of the disclosure will now be described
with reference to the accompanying drawings. In the draw-
ings, like reference numbers generally indicate identical,
functionally similar, and/or structurally similar elements.
The drawing in which an element first appears is indicated
by the leftmost digit(s) in the reference number.

DETAILED DESCRIPTION

The following Detailed Description refers to accompany-
ing drawings to illustrate exemplary embodiments consis-
tent with the disclosure. References in the Detailed Descrip-
tion to “one exemplary embodiment,” “an exemplary
embodiment,” “an example exemplary embodiment,” etc.,
indicate that the exemplary embodiment described can
include a particular feature, structure, or characteristic, but
every exemplary embodiment can not necessarily include
the particular feature, structure, or characteristic. Moreover,
such phrases are not necessarily referring to the same
exemplary embodiment. Further, when a particular feature,
structure, or characteristic is described in connection with an
exemplary embodiment, it is within the knowledge of those
skilled in the relevant art(s) to affect such feature, structure,
or characteristic in connection with other exemplary
embodiments whether or not explicitly described.

FIG. 1 illustrates a block diagram of a computing system
100 comprising multiple interface devices 110 and 120, each
including a DMA controller 130 and 140, interfacing with a
shared memory 150. A processor 160 interfaces with the
DMA controllers 130 and 140, and the shared memory 150.
In one embodiment, the processor 160 may execute instruc-
tions stored in the memory 150 that cause the processor 160
to configure the DMA controller 130 to transfer data from
the interface device 110 to an input buffer 152 in the memory
150 without further intervention from the processor 160.
Likewise, the processor 160 may execute instructions stored
in the memory 150 that cause the processor 160 to configure
the DMA controller 140 to transfer data from an output
buffer 154 in the memory 150 to the interface device 120
without further intervention from the processor 160.

As such, as data becomes available at the interface device
110, the DMA controller 130 transfers data from the inter-
face device 110 to the input buffer 152 and the processor 160
may process the data stored therein. When data becomes
available in the output buffer 154, the DMA controller 140
may transfer the data stored therein to the interface device
120. In some embodiments, to transfer data from the inter-
face device 110 to the interface 120, the processor 160 may
generate an intermediate copy of data stored in the input
buffer 152, and subsequently move the data to the output
buffer 154.

FIG. 2 illustrates a block diagram of a computing system
200 including a shared memory 205 partitioned into a user
address space 232 and a kernel address space 222. The user
address space 232 may, in some embodiments, include a
range of memory addresses that a process with user-level
permissions executing on a processor (not illustrated in FIG.
2) may read, write, or modity. Likewise, the kernel address
space 222 may, in some embodiments, include a range of
memory addresses that a process with kernel-level permis-
sions executing on a processor (not illustrated in FIG. 2)
may read, write, or modify.

10

15

20

25

30

35

40

45

50

55

60

65

4

Similar to FIG. 1, the computing system 200 includes
interface devices 210 and 215, each including respective
DMA controllers 225 and 240. The DMA controller 225 may
transfer data from the interface device 210 into an input
buffer 220, page-locked in the kernel address space 222 of
the memory 205. Likewise, the DMA controller 240 may
transfer data from an output buffer 235, page-locked in the
kernel address space 222 of the memory 205 to the interface
device 215. As such, a process with kernel-level permis-
sions, executing on a processor (not illustrated in FIG. 2),
may read, write, or modify the input buffer 220 or output
buffer 235. In some embodiments, the input buffer 220 may
be copied to a user buffer 230 in the user address space by
aprocess with user-level permissions executing a kernel API
function, such as copy_to_user(), that spawns or instructs a
process with kernel permissions to allocate the user buffer
230, and copy data from the input buffer 220 to the user
buffer 230. Likewise, the user buffer 230 may be copied to
the output buffer 235 by a process with user-level permis-
sions executing a kernel API function, such as copy_fro-
m_user(), that spawns or instructs a process with kernel
permissions to copy data from the user buffer 230 to the
output buffer 235. Thus, the memory 205 provides a conduit
for data transfer between the interface device 210 and the
interface device 215 while maintaining a user/kernel per-
mission separation of the memory 205.

FIG. 3 illustrates a block diagram of a memory system
300 including a virtual memory address space 310, a physi-
cal memory address space 320, a page table translator 321,
and interfaces to an input device 347 and an output device
348 through a DMA controller 346. The virtual memory
address space 310 may comprise a plurality of memory
addresses that map to a plurality of memory addresses in the
physical memory address space 320. The page table trans-
lator 321 may translate a given virtual memory address in
the virtual memory address space 310 to a physical memory
address in the physical memory address space 320, and vice
versa. Similar to FIG. 2, the DMA controller 346 may
transfer data between the input device 347 and output device
348 and their respective page-locked device buffers 335 and
345. Each page-locked device buffer 335 and 345 in the
physical address space 320 may have a corresponding
virtual device buffer 330 and 340 in a kernel-access virtual
memory address space 333 of the virtual memory address
space 310. In some embodiments, a process with kernel-
level permission running on a processor may read, write, or
modify the virtual device buffers 330 and 340 in the kernel-
access virtual memory address space 333 of the virtual
memory address space 310.

In one embodiment, the DMA controller 346 transfers
data from the input device 347 into a page-locked device
buffer 335 in the physical address space 320. A process with
user-level permissions executing on a processor executes a
kernel API function, for example, copy_to_user(), a process
with kernel-level permissions may instantiate a non-page-
locked buffer 355 in the physical address space 320. Sub-
sequently, the process with kernel-level permissions may
instantiate a virtual user buffer 350 and update the page table
translator 321 to indicate that the non-page-locked buffer
355 corresponds to the virtual user buffer 350. In such an
embodiment, the copy_to_user() kernel API may further
cause a process with kernel-level permissions to copy data
from the page-locked device buffer 335 to the non-page-
locked buffer 355. At this point, a process with user-level
permissions may read, write, or modify the data contained in
the non-page-locked buffer 355, and the corresponding
virtual user buffer 350. Likewise, the process with user-level

US 9,436,395 B2

5

permissions may execute a kernel API function, for
example, copy_from_user(), causing a process with kernel-
level permissions to copy the data from the non-page-locked
buffer 355 to the page-locked device buffer 345. The DMA
controller 346 may transfer the data in the page-locked
device buffer 345 to an output device 348, thus completing
the transfer of data from the input device 347 to the output
device 348. In other embodiments, the input device 347 and
output device 348 may comprise one device with both input
and output capabilities.

FIG. 4 illustrates a flowchart 400 including operational
steps to transfer data between two devices using a memory
including a kernel address space and a user address space.
The flowchart illustrated in FIG. 4 references the exemplary
embodiment illustrated in FIGS. 1-3, however, the exem-
plary embodiments illustrated in FIGS. 1-3 do not limit the
exemplary method steps illustrated in flowchart 400. Fur-
thermore, the order of method steps illustrated in flowchart
400, in some embodiments, may execute in alternative
orders, or in other embodiments, execute simultaneously
while remaining within the scope and spirit of the disclosure.

The flowchart 400 includes step 410, wherein, in some
embodiments, a DMA controller, similar to the DMA con-
troller 346 of FIG. 3, transfers data directly from a first
device, to a first page-locked buffer in a kernel address
space. The first device may correspond, in some embodi-
ments, to the input device 347 of FIG. 3, and the first
page-locked buffer may correspond to the non-page-locked
device buffer 355, and the corresponding virtual device
buffer 330 in the kernel-access virtual address space 333.

Step 420 includes, in some embodiments, a process with
kernel-level permissions, executing on a processor, copying
data from the first page-locked buffer in kernel address space
to a non-page-locked buffer in user address space. In a
similar embodiment, the process with kernel-level permis-
sions, executing on the processor, at step 430, copies data
from the non-page-locked buffer in user address space to a
second page-locked buffer in kernel address space.

The second page-locked buffer in kernel address space in
some embodiments, corresponds to the page-locked device
buffer 345, and the corresponding virtual device buffer 340
in the kernel-access virtual address space 333. Step 440,
includes, in some embodiments, a DMA controller transfers
data directly from the second page-locked buffer in kernel
address space to a second device. The DMA controller may
correspond, for example, to the DMA controller 346 in FIG.
3. Likewise, the second device may correspond, for example
to the output device 348 in FIG. 3. Thus, the flowchart 400
enables data transfer from the first device to the second
device using a memory including a kernel address space and
a user address space.

FIG. 5 illustrates a block diagram of a memory system
500, similar to the memory system 300 in FIG. 3, including
a virtual memory address space 510, a physical memory
address space 520, a page table translator 521, and interfaces
to an input device 547 and an output device 548 through a
DMA controller 546. The virtual memory address space 510
may comprise a plurality of memory addresses that map to
a plurality of memory addresses in the physical memory
address space 520. The page table translator 521 may
translate a given virtual memory address in the virtual
memory address space 510 to a physical memory address in
the physical memory address space 520, and vice versa.
Similar to FIG. 3, the DMA controller 546 may transfer data
between the input device 547 and output device 548 and
their respective page-locked device buffers 535 and 545.
Each page-locked device buffer 535 and 545 in the physical

5

10

15

20

25

30

35

40

45

55

60

6

address space 520 may have a corresponding virtual device
buffer 530 and 540 in a kernel-access portion 533 of the
virtual memory address space 510. In some embodiments, a
process with kernel-level permission running on a processor
may read, write, or modify the virtual device buffers 530 and
540 in the kernel-access portion 533 of the virtual memory
address space 510.

In one embodiment, the DMA controller 546 transfers
data from the input device 547 into a page-locked device
buffer 535 in the physical address space 520. A process with
user-level permissions, executes a modified kernel API
function, for example, a modified version of copy_to_
user(). The modified version of copy_to_user() may spawn
or cause a process with kernel-level permissions to instan-
tiate a virtual user buffer 550 in the user-access virtual
address space 551 and update the page table translator 521
to indicate that the virtual user buffer 550 also corresponds
to the page-locked device buffer 535. Thus, the page-locked
device buffer 535 now has two corresponding buffers, the
virtual user buffer 550 in the user-access address space 551,
and the virtual device buffer 530 in kernel address space
533. The modified version of copy_to_user() may for
example be included as a configuration option when a driver
is linked into the kernel compiler option. In other embodi-
ments, the modified version of copy_to_user() may be a
compilation option for the kernel itself.

In the above embodiment, in order to preserve the user/
kernel access abstraction, the page-locked device buffer 535
may be designated as copy-on-write. A copy-on write des-
ignation may indicate that if the page-locked device buffer
535, or the corresponding virtual user buffer 550 is modified
or over-written by a process with user-level access, that the
page-locked device buffer 535 be first copied to another
physical memory location before modification.

A process with user-access may execute, for example, the
copy_from_user() kernel API that causes a process with
kernel-level permissions to copy data from the page-locked
device buffer 535 to the page-locked device buffer 545.
Thus, a similar copy from the page-locked device buffer 535
to the page-locked device buffer 545 occurs without instan-
tiating the non-page-locked buffer 355 of FIG. 3 while
maintaining the user/kernel access abstraction. Subse-
quently, the DMA controller 546 may transfer the data in the
page-locked device buffer 545 to an output device 548, thus
completing the transfer of data from the input device 547 to
the output device 548. In other embodiments, the input
device 547 and output device 548 may comprise one device
with both input and output capabilities.

FIG. 6 illustrates a flowchart 600 including operational
steps to transfer data between two devices using a memory
including a kernel address space and a user address space.
The flowchart illustrated in FIG. 6 references the exemplary
embodiment illustrated in FIG. 5, however, the exemplary
embodiment illustrated in FIG. 5 does not limit the exem-
plary method steps illustrated in flowchart 600. Furthermore,
the order of method steps illustrated in flowchart 600, in
some embodiments, may execute in alternative orders, or in
other embodiments, execute simultaneously while remain-
ing within the scope and spirit of the disclosure.

The flowchart 600 includes step 610, wherein, in some
embodiments, a DMA controller, similar to the DMA con-
troller 546 of FIG. 5, transfers data directly from a first
device, to a first page-locked buffer in a kernel address
space. The first device may correspond, in some embodi-
ments, to the input device 547 of FIG. 5, and the first
page-locked buffer may correspond to the page-locked

US 9,436,395 B2

7

device buffer 535, and the corresponding virtual device
buffer 530 in the kernel-access virtual address space 533.

Step 620 includes, in some embodiments, a process with
kernel-level permissions that remaps a virtual user buffer in
a page table translator to the first page-locked buffer in
kernel address space. In one embodiment, the virtual user
buffer corresponds to the virtual user buffer 550 of FIG. 5,
and the page table translator corresponds to the page table
translator 521 of FIG. 5.

Step 640 includes marking the first page-locked buffer in
kernel address space copy-on-write. In some embodiments,
the copy-on-write indication resides in the page table trans-
lator 521 of FIG. 5. In a similar embodiment, the process
with kernel-level permissions, executing on the processor, at
step 650, copies data from the first page-locked buffer to a
second page-locked buffer.

The second page-locked buffer in kernel address space in
some embodiments, corresponds to the page-locked device
buffer 545 and the corresponding virtual device buffer 540
in the kernel-access virtual address space 533. Step 660,
includes, in some embodiments, a DMA controller transfer-
ring data directly from the second page-locked buffer in
kernel address space to a second device. The DMA control-
ler may correspond, for example, to the DMA controller 546
in FIG. 5. Likewise, the second device may correspond, for
example to the output device 548 in FIG. 5. Thus, the
flowchart 600 enables data transfer from the first device to
the second device that reduces redundant physical memory
copies while maintaining the user/kernel access abstraction.

FIG. 7 illustrates a block diagram of a memory system
700, similar to the memory system 500 in FIG. 5, including
a virtual memory address space 710, a physical memory
address space 720, a page table translator 721, and interfaces
to an input device 747 and an output device 748 through a
DMA controller 746. The virtual memory address space 710
may comprise a plurality of memory addresses that map to
a plurality of memory addresses in the physical memory
address space 720. The page table translator 721 may
translate a given virtual memory address in the virtual
memory address space 710 to a physical memory address in
the physical memory address space 720, and vice versa.
Similar to FIG. 5, the DMA controller 746 may transfer data
between the input device 747 and output device 748 and
their respective page-locked device buffers 735 and 745.
Each page-locked device bufter 735 and 745 in the physical
address space 720 may have a corresponding virtual device
buffer 730 and 740 in a kernel-access portion 733 of the
virtual memory address space 710. In some embodiments, a
process with kernel-level permission running on a processor
may read, write, or modify the virtual device buffers 730 and
740 in the kernel-access portion 733 of the virtual memory
address space 710.

In one embodiment, the DMA controller 746 transfers
data from the input device 747 into a page-locked device
buffer 735 in the physical address space 720. A process with
user-level permissions, executes a modified kernel API
function, for example, a modified version of copy_to_
user(). The modified version of copy_to_user() may spawn
or cause a process with kernel-level permissions to instan-
tiate a virtual user buffer 750 in the user-access virtual
address space 751 and update the page table translator 721
to indicate that the virtual user buffer 750 also corresponds
to the page-locked device buffer 735. Thus, the page-locked
device buffer 735 now has two corresponding buffers, the
virtual user buffer 750 in the user-access address space 751,
and the virtual device buffer 730 in kernel address space
733. The modified version of copy_to_user() may for

10

15

20

25

30

35

40

45

50

55

60

65

8

example be included as a configuration option when a driver
is linked into the kernel compiler option. In other embodi-
ments, the modified version of copy_to_user() may be a
compilation option for the kernel itself.

In the above embodiment, in order to preserve the user/
kernel access abstraction, the page-locked device buffer 735
may be designated as copy-on-write. A copy-on write des-
ignation may indicate that if the page-locked device buffer
735, or the corresponding virtual user buffer 750 is modified
or over-written by a process with user-level access, that the
page-locked device buffer 735 be first copied to another
physical memory location before modification. When such a
modification or over-write occurs by a process with user-
access, a process with kernel-access instantiates a non-page-
locked buffer 755 and updates the page table translator 721
to indicate that the virtual user buffer 750 corresponds to the
non-page-locked buffer 755. At this point, a process with
user-level permissions may read, write, or modify the data
contained in the non-page-locked buffer 755, and the cor-
responding virtual user buffer 750.

Similar to the embodiments illustrated in FIGS. 3 and 5,
a process with user-access may execute, for example, the
copy_from_user() kernel API that causes a process with
kernel-level permissions to copy data from the page-locked
device buffer 735 to the page-locked device buffer 745.
Thus, a similar copy from the page-locked buffer 735 to the
page-locked device buffer 745 occurs without instantiating
the non-page-locked buffer 355 of FIG. 3 while maintaining
the user/kernel access abstraction. Subsequently, the DMA
controller 746 may transfer the data in the page-locked
device buffer 745 to an output device 748, thus completing
the transfer of data from the input device 747 to the output
device 748. In other embodiments, the input device 747 and
output device 748 may comprise one device with both input
and output capabilities.

FIG. 8 illustrates a flowchart 800 including operational
steps to preserve the integrity of copy-on-write device
buffers using page remapping. The flowchart illustrated in
FIG. 8 references the exemplary embodiment illustrated in
FIG. 7, however, the exemplary embodiment illustrated in
FIG. 7 does not limit the exemplary method steps illustrated
in flowchart 800. Furthermore, the order of method steps
illustrated in flowchart 800, in some embodiments, may
execute in alternative orders, or in other embodiments,
execute simultaneously while remaining within the scope
and spirit of the disclosure.

The flowchart 800 includes step 810, wherein, in some
embodiments, a process with user-access attempts to modify
data in a page-locked buffer marked copy-on-write using a
user buffer. As a consequence of attempting to modify data
in the page-locked buffer marked copy-on-write, the pro-
cessor may issue a page fault, for example indicating that the
data is unavailable. The page-locked buffer marked copy-
on-write may for example correspond to the page-locked
device buffer 735 of FIG. 7 and the user buffer may
correspond to the virtual user buffer 750 of FIG. 7.

Step 820 includes, in some embodiments, a process with
kernel-level permissions, executing on a processor, copying
data from the page-locked buffer in kernel address space to
a non-page-locked buffer in user address space. Step 830
includes remapping the user buffer to the non-page-locked
device buffer. Thus, a process with user-level permissions
may read, write, or modify the data contained in the non-
page-locked buffer and the corresponding user buffer.

It is to be appreciated that the Detailed Description
section, and not the Summary and Abstract sections, is
intended to be used to interpret the claims. The Summary

US 9,436,395 B2

9

and Abstract sections may set forth one or more but not all
exemplary embodiments of the present invention as con-
templated by the inventor(s), and thus, are not intended to
limit the present invention and the appended claims in any
way.

CONCLUSION

The exemplary embodiments described herein are pro-
vided for illustrative purposes, and are not limiting. Other
exemplary embodiments are possible, and modifications
may be made to the exemplary embodiments within the
spirit and scope of the disclosure. Therefore, the Detailed
Description is not meant to limit the disclosure. Rather, the
scope of the disclosure is defined only in accordance with
the following claims and their equivalents.

Embodiments of the disclosure may be implemented in
hardware, firmware, software, or any combination thereof.
Embodiments of the disclosure may also be implemented as
instructions stored on a machine-readable medium, which
may be read and executed by one or more processors. A
machine-readable medium may include any mechanism for
storing or transmitting information in a form readable by a
machine (e.g., a computing device). For example, a
machine-readable medium may include read only memory
(ROM); random access memory (RAM); magnetic disk
storage media; optical storage media; flash memory devices;
electrical, optical, acoustical or other forms of propagated
signals (e.g., carrier waves, infrared signals, digital signals,
etc.), and others. Further, firmware, software, routines,
instructions may be described herein as performing certain
actions. However, it should be appreciated that such descrip-
tions are merely for convenience and that such actions in fact
result from computing devices, processors, controllers, or
other devices executing the firmware, software, routines,
instructions, etc.

It is to be appreciated that the Detailed Description
section, and not the Abstract section, is intended to be used
to interpret the claims. The Abstract section may set forth
one or more, but not all exemplary embodiments, of the
disclosure, and thus, are not intended to limit the disclosure
and the appended claims in any way.

The disclosure has been described above with the aid of
functional building blocks illustrating the implementation of
specified functions and relationships thereof. The boundar-
ies of these functional building blocks have been arbitrarily
defined herein for the convenience of the description. Alter-
nate boundaries may be defined so long as the specified
functions and relationships thereof are appropriately per-
formed.

It will be apparent to those skilled in the relevant art(s)
that various changes in form and detail can be made therein
without departing from the spirit and scope of the disclosure.
Thus the disclosure should not be limited by any of the
above-described exemplary embodiments, but should be
defined only in accordance with the following claims and
their equivalents.

What is claimed is:

1. A method to copy data comprising:

receiving, with a processor, a first virtual memory address
mapped to a first physical memory address of a
memory device and a second virtual memory address
mapped to a second physical memory address of the
memory device, wherein the memory device comprises
data at the first physical memory address;

10

20

25

30

35

40

45

50

55

60

65

10

mapping, with a first process executing with user permis-
sions on the processor, a third virtual memory address
to the first physical memory address of the memory
device; and

copying, with a second process executing with kernel

permissions on the processor, the data at the first
physical memory address to the second physical
memory address.

2. The method of claim 1, further comprising:

marking, with the processor, the first physical memory

address as copy-on-write.

3. The method of claim 1, further comprising:

modifying, with a third process executing with user

permissions on the processor, the data using the third
virtual memory address.

4. The method of claim 3, wherein the modifying further
comprises:

copying, with a fourth process executing with user per-

missions on the processor, the data at the first physical
memory address to a third physical memory address of
the memory device; and

remapping, with the processor, the third virtual memory

address to the third physical memory address.

5. The method of claim 3, wherein the modifying further
comprises:

issuing a page fault with the processor if the first physical

memory address is marked copy-on-write.

6. The method of claim 1, further comprising:

receiving, with the processor, the data via direct memory

access (DMA) at the first physical memory address;
and

transmitting, with the processor, the data via DMA from

the second physical memory address.

7. A system to copy data comprising:

a memory; and

a processor, coupled to the memory, configured to:

map, with kernel permissions, a first virtual memory
address to a first physical memory address in the
memory;

map, with kernel permissions, a second virtual memory
address to a second physical memory address in the
memory;

receive the data at the first physical memory address;

map, with user permissions, a third virtual memory
address to the first physical memory address; and

copy, with kernel permissions, the data from the first
physical memory address to the second physical
memory address.

8. The system of claim 7, wherein the processor is further
configured to mark the first physical memory address copy-
on-write.

9. The system of claim 7, wherein the processor is further
configured to modify, with user permissions, the data using
the third virtual memory address.

10. The system of claim 9, wherein the processor is
further configured to:

copy, with user permissions, the data at the first physical

memory address to a third physical memory address;
and

remap the third virtual memory address to the third

physical memory address.

11. The system of claim 9, the processor is further
configured to issue a page fault when modifying, with user
permissions, the data using the third virtual memory address,
if the first physical memory address is marked copy-on-
write.

US 9,436,395 B2

11

12. The system of claim 7, further comprising a first
device interface, coupled to the memory, configured to
transfer the data into the memory at the first physical
memory address.

13. The system of claim 7, further comprising a second
device interface, coupled to the memory, configured to
transfer the data out of the memory from the second physical
memory address.

14. The system of claim 7, further comprising a DMA
controller configured to:

receive the data and store the data at the first physical

memory address; and

extract the data from the second physical memory

address.

15. A non-transitory computer readable medium compris-
ing instructions that when executed by a processor cause the
processor to:

map, with kernel permissions, a first virtual memory

address to a first physical memory address;

map, with kernel permissions, a second virtual memory

address to a second physical memory address;
receive data at the first physical memory address;
map, with user permissions, a third virtual memory
address to the first physical memory address; and

copy, with kernel permissions, the data from the first
physical memory address to the second physical
memory address.

16. The non-transitory computer readable medium of
claim 15, further comprising instructions that when executed
by the processor cause the processor to:

mark the first physical memory address copy-on-write.

10

15

20

25

12

17. The non-transitory computer readable medium of
claim 15, further comprising instructions that when executed
by the processor cause the processor to:

modify, with user permissions, the data using the third

virtual memory address.

18. The non-transitory computer readable medium of
claim 17, further comprising instructions that when executed
by the processor cause the processor to:

issue a page fault when modifying, with user permissions,

the data using the third virtual memory address, if the
first physical memory address is marked copy-on-write.

19. The non-transitory computer readable medium of
claim 17, further comprising instructions that when executed
by the processor cause the processor to:

configure a DMA controller to receive the data at the first

physical memory address; and

configure the DMA controller to extract the data from the

second physical memory address.

20. The non-transitory computer readable medium of
claim 15, further comprising instructions that when executed
by the processor cause the processor to:

copy, with user permissions, the data at the first physical

memory address to a third physical memory address;
and

remap the third virtual memory address to the third

physical memory address.

#* #* #* #* #*

